Foundations for Bayesian inference with engineered likelihood functions for robust amplitude estimation

نویسندگان

چکیده

We present mathematical and conceptual foundations for the task of robust amplitude estimation using engineered likelihood functions (ELFs), a framework introduced by Wang et al. [PRX Quantum 2, 010346 (2021)] that uses Bayesian inference to enhance rate information gain in quantum sampling. These ELFs, which are obtained choosing tunable parameters parametrized circuit minimize expected posterior variance an estimated parameter, play important role estimating expectation values observables. give thorough characterization analysis arising from certain classes circuits combine this with tools procedure picking optimal ELF parameters. Finally, we numerical results demonstrate performance ELFs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

channel estimation for mimo-ofdm systems

تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با ‏خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز ‏الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی ‏محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...

Supplemental Material for GEL Estimation for Heavy-Tailed GARCH Models with Robust Empirical Likelihood Inference

In the main paper we reported GELITT simulation bias over a grid of trimming fractiles {k ) n , k n }. We now repreat the simulation and fix either k ) n or k n , and report bias, mse, and test statistics. We use k ( ) n ∼ λn/ ln(n), λn and λ ln(n) each with k n ∼ .2 ln(n), and k n ∼ λn/ ln(n), λn and λ ln(n) each with k ( ) n ∼ .05n/ ln(n). We summarize the various λ’s and actual fractile valu...

متن کامل

Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome

Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data.   Methods: This study use...

متن کامل

Bayesian inference for psychometric functions.

In psychophysical studies, the psychometric function is used to model the relation between physical stimulus intensity and the observer's ability to detect or discriminate between stimuli of different intensities. In this study, we propose the use of Bayesian inference to extract the information contained in experimental data to estimate the parameters of psychometric functions. Because Bayesia...

متن کامل

Estimation with Bayesian Inference

A probabilistic technique for the joint estimation of background and sources in high-energy astrophysics is described. Bayesian inference is applied to gain insight into the coexistence of background and sources through a probabilistic two-component mixture model, which provides consistent uncertainties of background and sources. The present analysis is applied on ROSAT PSPC data in Survey Mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2022

ISSN: ['0022-2488', '1527-2427', '1089-7658']

DOI: https://doi.org/10.1063/5.0042433